login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Secondary root edges in doubly rooted tree maps with n edges.
2

%I #21 May 19 2024 14:03:09

%S 0,1,10,105,1176,13860,169884,2147145,27810640,367479684,4936848280,

%T 67255063876,927192688800,12914469594000,181497968832600,

%U 2570903476583625,36671501616314400,526348636137670500,7597019633665077000,110205019733436728100

%N Secondary root edges in doubly rooted tree maps with n edges.

%H Alois P. Heinz, <a href="/A046715/b046715.txt">Table of n, a(n) for n = 0..250</a>

%H R. C. Mullin, <a href="http://dx.doi.org/10.1016/S0021-9800(67)80001-2">On the average activity of a spanning tree of a rooted map</a>, J. Combin. Theory, 3 (1967), 103-121.

%H R. C. Mullin, <a href="/A260039/a260039.pdf">On the average activity of a spanning tree of a rooted map</a>, J. Combin. Theory, 3 (1967), 103-121. [Annotated scanned copy]

%F B(n) = (2*n)!*(2*n+2)!*n / (2*n!*(n+1)!^2*(n+2)!). - _Alois P. Heinz_, Dec 22 2011

%p B:= n-> (2*n)!*(2*n+2)!*n / (2*n!*(n+1)!^2*(n+2)!):

%p seq(B(n), n=0..20); # _Alois P. Heinz_, Dec 22 2011

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_

%E Corrected and extended by _Alois P. Heinz_, Dec 22 2011