Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 30 2021 12:02:34
%S 2,8,34,160,806,4256,23256,130416,746350,4341480,25594530,152585472,
%T 918324904,5572034240,34048494608,209347674768,1294227005694,
%U 8040125464280,50165404177350,314229490307040,1975283452131990,12456968750889600,78790615438385760,499700263517332800
%N a(n) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 4 edges which are invariant under a rotation of a 1/2 turn. (Column 2 of A091665.)
%H Andrew Howroyd, <a href="/A046649/b046649.txt">Table of n, a(n) for n = 2..200</a>
%H W. G. Brown, <a href="http://dx.doi.org/10.4153/CJM-1963-056-7">Enumeration of non-separable planar maps</a>, Canad. J. Math., 15 (1963), 526-545.
%F a(n) = 4*(7*n-11)*(3*n-5)!/((n-2)!*(2*n-1)!). - _Emeric Deutsch_, Mar 03 2004
%F G.f.: 2*(g+1)/(1-g)^3 where g*(1-g)^2 = x. - _Mark van Hoeij_, Nov 10 2011
%Y Column 2 of A091665.
%K nonn,easy
%O 2,1
%A _N. J. A. Sloane_
%E More terms from _Emeric Deutsch_, Mar 03 2004
%E Terms a(23) and beyond from _Andrew Howroyd_, Mar 29 2021