login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of cubic residues mod 6^n.
0

%I #17 Mar 27 2024 13:47:09

%S 1,6,9,35,210,1083,6253,37518,222705,1331099,7986594,47871651,

%T 287102581,1722615486,10334532969,62003849075,372023094450,

%U 2232108315723,13392560190013,80355361140078,482131358602785

%N Number of cubic residues mod 6^n.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (6,0,36,-216,0,-251,1506,0,216,-1296)

%F From _R. J. Mathar_, Feb 27 2011: (Start)

%F a(n) = A046530(6^n) = A046631(n)*A046630(n).

%F a(n) = +6*a(n-1) +36*a(n-3) -216*a(n-4) -251*a(n-6) +1506*a(n-7) +216*a(n-9) -1296*a(n-10).

%F G.f.: ( 1-27*x^2-55*x^3+795*x^5+690*x^6-2808*x^8-1296*x^9 ) / ( (x-1) *(6*x-1) *(3*x-1) *(2*x-1) *(1+x+x^2) *(4*x^2+2*x+1) *(9*x^2+3*x+1) ). (End)

%t LinearRecurrence[{6,0,36,-216,0,-251,1506,0,216,-1296},{1,6,9,35,210,1083,6253,37518,222705,1331099},30] (* _Harvey P. Dale_, Mar 17 2023 *)

%K nonn,easy

%O 0,2

%A _David W. Wilson_