login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046498 Palindromes expressible as the sum of 3 consecutive palindromes. 2

%I #14 Jun 09 2021 08:17:50

%S 6,9,66,99,333,363,393,636,666,696,939,969,999,3333,3663,3993,6336,

%T 6666,6996,9339,9669,9999,30303,30603,30903,33333,33633,33933,36363,

%U 36663,36963,39393,39693,39993,60306,60606,60906,63336,63636,63936

%N Palindromes expressible as the sum of 3 consecutive palindromes.

%H Michael S. Branicky, <a href="/A046498/b046498.txt">Table of n, a(n) for n = 1..15358</a> (all terms with <= 13 digits)

%H Patrick De Geest, <a href="http://www.worldofnumbers.com/index.html">World!Of Numbers</a>

%e 6666 = 2112 + 2222 + 2332.

%o (Python)

%o from itertools import product

%o def ispal(n): s = str(n); return s == s[::-1]

%o def pals(d, base=10): # all d-digit palindromes

%o digits = "".join(str(i) for i in range(base))

%o for p in product(digits, repeat=d//2):

%o if d > 1 and p[0] == "0": continue

%o left = "".join(p); right = left[::-1]

%o for mid in [[""], digits][d%2]: yield int(left + mid + right)

%o def auptod(dd):

%o alst = [6, 9]

%o last3 = [7, 8, 9]

%o for d in range(2, dd+1):

%o for p in pals(d):

%o last3 = last3[1:] + [p]

%o if ispal(sum(last3)): alst.append(sum(last3))

%o return alst

%o print(auptod(5)) # _Michael S. Branicky_, Jun 09 2021

%Y Cf. A002113.

%K nonn,base

%O 1,1

%A _Patrick De Geest_, Sep 15 1998

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 19:10 EST 2023. Contains 367540 sequences. (Running on oeis4.)