Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Nov 04 2024 09:30:57
%S 512,768,1152,1280,1728,1792,1920,2592,2688,2816,2880,3200,3328,3888,
%T 4032,4224,4320,4352,4480,4800,4864,4992,5832,5888,6048,6272,6336,
%U 6480,6528,6720,7040,7200,7296,7424,7488,7936,8000,8320,8748,8832,9072,9408
%N Numbers that are divisible by exactly 9 primes with multiplicity.
%C Also called 9-almost primes. Products of exactly 9 primes (not necessarily distinct). - _Jonathan Vos Post_, Dec 11 2004
%H T. D. Noe, <a href="/A046312/b046312.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Reference</a>
%F Product p_i^e_i with Sum e_i = 9.
%F a(n) ~ 40320n log n / (log log n)^8. - _Charles R Greathouse IV_, May 06 2013
%t Select[Range[2200], Plus @@ Last /@ FactorInteger[ # ] == 9 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *)
%t Select[Range[10000],PrimeOmega[#]==9&] (* _Harvey P. Dale_, Oct 24 2020 *)
%o (PARI) is(n)=bigomega(n)==9 \\ _Charles R Greathouse IV_, Mar 21 2013
%o (Python)
%o from math import isqrt, prod
%o from sympy import primerange, integer_nthroot, primepi
%o def A046312(n):
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
%o def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,9)))
%o return bisection(f,n,n) # _Chai Wah Wu_, Nov 03 2024
%Y Cf. A046311, A120050 (number of 9-almost primes <= 10^n).
%Y Cf. A101637, A101638, A101605, A101606.
%Y Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), this sequence (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011
%K nonn
%O 1,1
%A _Patrick De Geest_, Jun 15 1998