Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 May 09 2021 09:40:06
%S 5,9,9,21,53,67,71,87,87,91,117,161,187,213,363,419,501,537,543,739,
%T 879,1101,1329,1391,1641,1939,2093,2109,2331,2557,2639,2697,2863,3441,
%U 3441,4413,4461,4479,4557,5489,6033,6267,6351,6973,7181,7459,7679,8113,8241
%N a(1) = 5; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
%H Robert Israel, <a href="/A046255/b046255.txt">Table of n, a(n) for n = 1..300</a>
%p R:= 5: p:= 5: x:= 5:
%p for count from 2 to 100 do
%p for y from x by 2 do
%p if isprime(10^(1+ilog10(y))*p+y) then
%p R:= R, y; p:= 10^(1+ilog10(y))*p+y; x:= y;
%p break
%p fi
%p od od:
%p R; # _Robert Israel_, Nov 22 2020
%t a[1] = 5; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 49}] (* _Robert G. Wilson v_, Aug 05 2005 *)
%o (Python)
%o from sympy import isprime
%o def aupton(terms):
%o alst, astr = [5], "5"
%o while len(alst) < terms:
%o an = alst[-1]
%o while an%5 ==0 or not isprime(int(astr + str(an))): an += 2
%o alst, astr = alst + [an], astr + str(an)
%o return alst
%o print(aupton(49)) # _Michael S. Branicky_, May 09 2021
%Y Cf. A069607, A074341, A033680, A033679, A033681, A046254, A046256, A046257, A046258, A046259, A111524.
%K nonn
%O 1,1
%A _Patrick De Geest_, May 15 1998