OFFSET
1,3
COMMENTS
No number less than 10^8 has a cube that is palindromic in base 2 or base 3.
Next term exceeds 10000000000. - Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 09 2006
LINKS
Patrick De Geest, World!Of Numbers, Palindromic cubes in bases 2 to 17.
FORMULA
It seems that for n>=2, a(n)=4^(n-1)+1. - Benoit Cloitre, Dec 07 2003
MATHEMATICA
For[i = 1, i < 1000000, i++, tmp = IntegerDigits[i^3, 4]; If[tmp == Reverse[tmp], Print[i]] ]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 09 2006 *)
PROG
(PARI) isok(k) = my(d=digits(k^3, 4)); Vecrev(d) == d; \\ Michel Marcus, Aug 02 2022
(Python)
from itertools import count, islice
from sympy.ntheory import is_palindromic as ispal
def agen(startk=0): yield from (k for k in count(startk) if ispal(k**3, 4))
print(list(islice(agen(), 12))) # Michael S. Branicky, Aug 02 2022
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 09 2006, corrected Nov 01 2006
STATUS
approved