login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First numerator and then denominator of 1/2-Pascal triangle (by row). To get a 1/2-Pascal triangle, replace "2" in third row of Pascal triangle with "1/2" and calculate all other rows as in Pascal triangle.
22

%I #23 Mar 31 2017 22:35:47

%S 1,1,1,1,1,1,1,1,1,2,1,1,1,1,3,2,3,2,1,1,1,1,5,2,3,1,5,2,1,1,1,1,7,2,

%T 11,2,11,2,7,2,1,1,1,1,9,2,9,1,11,1,9,1,9,2,1,1,1,1,11,2,27,2,20,1,20,

%U 1,27,2,11,2,1,1,1,1,13,2,19,1,67,2,40,1,67,2,19,1,13,2,1,1,1,1,15,2

%N First numerator and then denominator of 1/2-Pascal triangle (by row). To get a 1/2-Pascal triangle, replace "2" in third row of Pascal triangle with "1/2" and calculate all other rows as in Pascal triangle.

%H Peter J. C. Moses, <a href="/A046213/b046213.txt">Table of n, a(n) for n = 1..10000</a>

%e 1/1;

%e 1/1 1/1;

%e 1/1 1/2 1/1;

%e 1/1 3/2 3/2 1/1;

%e 1/1 5/2 3/1 5/2 1/1;

%e 1/1 7/2 11/2 11/2 7/2 1/1;

%e 1/1 9/2 9/1 11/1 9/1 9/2 1/1;

%e 1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1; ...

%t fractionalPascal[1,_] = {1}; fractionalPascal[2,_] = {1,1}; fractionalPascal[3,frac_] = {1,frac,1}; fractionalPascal[n_,frac_] := fractionalPascal[n,frac] = Join[{1}, Map[Total, Partition[fractionalPascal[n-1,frac],2,1]],{1}]; Flatten[Map[Transpose,Transpose[{Numerator[#], Denominator[#]}]&[Map[fractionalPascal[#,1/2]&, Range[15]]]]] (* _Peter J. C. Moses_, Apr 04 2013 *)

%K nonn,tabf,less

%O 1,10

%A _Mohammad K. Azarian_