Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #37 Jul 15 2022 06:51:18
%S 1,2,5,12,30,73,183,456,1151,2900,7361,18684,47652,121584,311259,
%T 797311,2047384,5260692,13542718,34884239,89991344,232282110,
%U 600281932,1552096361,4017128206,10401997092,26957667445,69892976538,181340757857,470680630478,1222433229262,3175981845982
%N Number of self-avoiding walks on a 2-D lattice of length n which start at the origin, take first step in the {+1,0} direction and whose vertices are always nonnegative in x and y.
%H Siqi Wang, <a href="/A046170/b046170.txt">Table of n, a(n) for n = 1..40</a>
%H Stephen A. Silver, <a href="https://web.archive.org/web/20150912161528/http://www.argentum.freeserve.co.uk/maths/a046170.c">C program</a>
%H Siqi Wang, <a href="/A046170/a046170.cpp.txt">C++ program used to generate the sequence</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Self-AvoidingWalk.html">Self-Avoiding Walk</a>
%F a(n) = A038373(n)/2. - _Siqi Wang_, Jul 15 2022
%Y Cf. A038373, A046171.
%K nonn,walk
%O 1,2
%A _Eric W. Weisstein_
%E More terms from _Stephen A. Silver_
%E More terms from _Siqi Wang_, Jul 15 2022