Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Aug 05 2024 16:03:42
%S 16,32,48,64,80,81,96,112,128,144,160,162,176,192,208,224,240,243,256,
%T 272,288,304,320,324,336,352,368,384,400,405,416,432,448,464,480,486,
%U 496,512,528,544,560,567,576,592,608,624,625,640,648,656,672,688,704
%N Biquadrateful numbers.
%C The convention in the OEIS is that squareful, cubeful (A046099), biquadrateful, ... mean the same as "not squarefree" etc., while 2- or square-full, 3- or cube-full (A036966), 4-full (A036967) are used for Golomb's notion of powerful numbers (A001694, see references there), when each prime factor occurs to a power > 1. - _M. F. Hasler_, Feb 12 2008
%C Also solutions to equation tau_{-3}(n)=0, where tau_{-3} is A007428. - _Enrique Pérez Herrero_, Jan 19 2013
%C Sum_{n>0} 1/a(n)^s = Zeta(s) - Zeta(s)/Zeta(4s). - _Enrique Pérez Herrero_, Jan 21 2013
%C A051903(a(n)) > 3. - _Reinhard Zumkeller_, Sep 03 2015
%C The asymptotic density of this sequence is 1 - 1/zeta(4) = 1 - 90/Pi^4 = 0.076061... - _Amiram Eldar_, Jul 09 2020
%H T. D. Noe, <a href="/A046101/b046101.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Biquadratefree.html">Biquadratefree.</a>
%p with(NumberTheory):
%p isBiquadrateful := n -> is(denom(Radical(n) / LargestNthPower(n, 2)) <> 1):
%p select(isBiquadrateful, [`$`(1..704)]); # _Peter Luschny_, Jul 12 2022
%t lst={};Do[a=0;Do[If[FactorInteger[m][[n, 2]]>3, a=1], {n, Length[FactorInteger[m]]}];If[a==1, AppendTo[lst, m]], {m, 10^3}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 15 2008 *)
%t Select[Range[1000],Max[Transpose[FactorInteger[#]][[2]]]>3&] (* _Harvey P. Dale_, May 25 2014 *)
%o (Haskell)
%o a046101 n = a046101_list !! (n-1)
%o a046101_list = filter ((> 3) . a051903) [1..]
%o -- _Reinhard Zumkeller_, Sep 03 2015
%o (PARI) is(n)=n>9 && vecmax(factor(n)[,2])>3 \\ _Charles R Greathouse IV_, Sep 03 2015
%o (Python)
%o from sympy import mobius, integer_nthroot
%o def A046101(n):
%o def f(x): return n+sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x,4)[0]+1))
%o m, k = n, f(n)
%o while m != k:
%o m, k = k, f(k)
%o return m # _Chai Wah Wu_, Aug 05 2024
%Y Cf. A046100, A046099, A036967, A001694, A051903, A215267.
%K nonn
%O 1,1
%A _Eric W. Weisstein_