login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Calabi's constant.
2

%I #40 Oct 02 2023 02:38:29

%S 1,5,5,1,3,8,7,5,2,4,5,4,8,3,2,0,3,9,2,2,6,1,9,5,2,5,1,0,2,6,4,6,2,3,

%T 8,1,5,1,6,3,5,9,1,7,0,3,8,0,3,8,8,7,1,9,9,5,2,8,0,0,7,1,2,0,1,1,7,9,

%U 2,6,7,4,2,5,5,4,2,5,6,9,5,7,2,9,5,7,6,0,4,5,3,6,1,2,0,2,5,4,3,6,2,9

%N Decimal expansion of Calabi's constant.

%C An algebraic number of degree 3. - _Charles R Greathouse IV_, Oct 31 2014

%C Named after the Italian-American mathematician Eugenio Calabi (1923-2023). - _Amiram Eldar_, Jun 18 2021

%D John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus (Springer-Verlag), 1996, p. 206.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 8.13, pp. 523-524.

%H Eugenio Calabi, <a href="https://web.archive.org/web/20140903140348/http://www.people.fas.harvard.edu/~sfinch/csolve/calabi.html">Outline of Proof Regarding Squares Wedged in Triangle</a>, 1997.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CalabisTriangle.html">Calabi's Triangle</a>.

%H John E. Wetzel, <a href="https://www.jstor.org/stable/3621570">Squares in Triangles</a>, The Mathematical Gazette, Vol. 86, No. 505 (2002), pp. 28-34.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Calabi_triangle">Calabi triangle</a>.

%H <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a>

%F Equals (28*c+2)/sqrt(196*c^2+28*c+145) where c = cos(arctan(12*sqrt(237)/289)/3). - _Robert FERREOL_, Jun 22 2019

%t RealDigits[ x /. FindRoot[ 2x^3-2x^2-3x+2==0, {x, 1.5}, WorkingPrecision->200 ], 10 ][ [ 1 ] ]

%t RealDigits[ Root[ 2x^3-2x^2-3x+2, x, 3], 10, 102][[1]] (* _Jean-François Alcover_, Jun 18 2014 *)

%o (PARI) polrootsreal(2*x^3-2*x^2-3*x+2)[3] \\ _Charles R Greathouse IV_, Oct 31 2014

%Y Cf. A046096.

%K nonn,cons

%O 1,2

%A _Eric W. Weisstein_