Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #67 Jan 04 2025 02:42:20
%S 1,3,1,12,9,1,60,75,18,1,360,660,255,30,1,2520,6300,3465,645,45,1,
%T 20160,65520,47880,12495,1365,63,1,181440,740880,687960,235305,35700,
%U 2562,84,1,1814400,9072000,10372320,4452840,877905,86940,4410,108,1
%N Triangle read by rows, the Bell transform of (n+2)!/2 without column 0.
%C Previous name was: A triangle of numbers related to triangle A030523.
%C a(n,1)= A001710(n+1). a(n,m)=: S1p(3; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers).
%C Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A035342(n,m) := S2(3; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
%C a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+2 colors. The k roots (j=0) each come in one (or no) color. - _Wolfdieter Lang_, Oct 12 2007
%C a(4,2)=75=4*(3*4)+3*(3*3) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*3*4)=12 colored versions, e.g. ((1c1),(2c1,3c3,4c2)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 3 colors, c1, c2 and c3, can be chosen and the vertex labeled 4 with j=2 can come in 4 colors, e.g. c1, c2, c3 and c4. Therefore there are 4*(1)*(1*3*4)=48 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*3)*(1*3))=27 such forests, e.g. ((1c1,3c2)(2c1,4c1)) or ((1c1,3c2)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
%C Also the Bell transform of A001710(n+2) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 19 2016
%H Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
%H Wolfdieter Lang, <a href="/A046089/a046089.txt">First ten rows</a>.
%H E. Neuwirth, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00373-3">Recursively defined combinatorial Functions: Extending Galton's board</a>, Discr. Maths. 239 (2001) 33-51.
%H John Riordan, <a href="/A002720/a002720_2.pdf">Letter, Apr 28 1976.</a>
%F a(n, m) = n!*A030523(n, m)/(m!*2^(n-m)); a(n, m) = (2*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n<m; a(n, 0) := 0; a(1, 1)=1. E.g.f. for m-th column: ((x*(2-x)/(2*(1-x)^2))^m)/m!.
%F a(n, m) = sum(|S1(n, j)|* A075497(j, m), j=m..n) (matrix product), with S1(n, j) := A008275(n, j) (signed Stirling1 triangle). Priv. comm. to _Wolfdieter Lang_ by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference.
%F a(n, k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1)))/(2^k*k!) - _Vladimir Kruchinin_, Apr 01 2011
%e Triangle begins:
%e [1],
%e [3, 1],
%e [12, 9, 1],
%e [60, 75, 18, 1],
%e [360, 660, 255, 30, 1],
%e [2520, 6300, 3465, 645, 45, 1],
%e ...
%t a[n_, m_] /; n >= m >= 1 := a[n, m] = (2m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover_, Jul 22 2011 *)
%t a[n_, k_] := -(-1/2)^k*(n+1)!*HypergeometricPFQ[{1-k, n/2+1, (n+3)/2}, {3/2, 2}, 1]/(k-1)!; Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 28 2013, after _Vladimir Kruchinin_ *)
%t a[0] = 0; a[n_] := (n + 1)!/2;
%t T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, a[0]^n], Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]];
%t Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jan 19 2016, after _Peter Luschny_, updated Jan 01 2021 *)
%t rows = 9;
%t a[n_, m_] := BellY[n, m, Table[(k+2)!/2, {k, 0, rows}]];
%t Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *)
%o (Maxima) a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1),j,1,k))/(2^k*k!); /* _Vladimir Kruchinin_, Apr 01 2011 */
%o (Sage) # uses[bell_matrix from A264428]
%o # Adds a column 1,0,0,0, ... at the left side of the triangle.
%o bell_matrix(lambda n: factorial(n+2)//2, 9) # _Peter Luschny_, Jan 19 2016
%Y Cf. A001710, A049376, A105752.
%Y Alternating row sums A134138.
%K easy,nonn,tabl,changed
%O 1,2
%A _Wolfdieter Lang_
%E New name from _Peter Luschny_, Jan 19 2016