login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

5-multiperfect numbers.
37

%I #30 Nov 14 2019 09:38:50

%S 14182439040,31998395520,518666803200,13661860101120,30823866178560,

%T 740344994887680,796928461056000,212517062615531520,

%U 69357059049509038080,87934476737668055040,170206605192656148480

%N 5-multiperfect numbers.

%C Conjectured finite and probably these are the only terms; cf. Flammenkamp's link. [_Georgi Guninski_, Jul 25 2012]

%H T. D. Noe, <a href="/A046060/b046060.txt">Table of n, a(n) for n = 1..65</a> (complete sequence from Flammenkamp)

%H F. Firoozbakht, M. F. Hasler, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Hasler/hasler2.html">Variations on Euclid's formula for Perfect Numbers</a>, JIS 13 (2010) #10.3.1

%H Achim Flammenkamp, <a href="http://wwwhomes.uni-bielefeld.de/achim/mpn.html">The Multiply Perfect Numbers Page</a>

%H Fred Helenius, <a href="http://pw1.netcom.com/~fredh/index.html">Link to Glossary and Lists</a>

%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy : Some Resources </a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiperfectNumber.html">Multiperfect Number.</a>

%e From _Daniel Forgues_, May 09 2010: (Start)

%e 14182439040 = 2^7*3^4*5*7*11^2*17*19

%e sigma(14182439040) = (2^8-1)/1*(3^5-1)/2*(5^2-1)/4*(7^2-1)/6*(11^3-1)/10*(17^2-1)/16*(19^2-1)/18

%e = (255)*(121)*(6)*(8)*(133)*(18)*(20)

%e = (3*5*17)*(11^2)*(2*3)*(2^3)*(7*19)*(2*3^2)*(2^2*5)

%e = 2^7*3^4*5^2*7*11^2*17*19

%e = (5) * (2^7*3^4*5*7*11^2*17*19)

%e = 5 * 14182439040 (End)

%o (PARI) is(n)=sigma(n)==5*n \\ _Charles R Greathouse IV_, Apr 05 2013

%Y Cf. A000396, A005820, A027687, A046061, A007539.

%K nonn

%O 1,1

%A _Eric W. Weisstein_