login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Discriminants of imaginary quadratic fields with class number 12 (negated).
3

%I #25 Mar 15 2019 22:52:10

%S 231,255,327,356,440,516,543,655,680,687,696,728,731,744,755,804,888,

%T 932,948,964,984,996,1011,1067,1096,1144,1208,1235,1236,1255,1272,

%U 1336,1355,1371,1419,1464,1480,1491,1515,1547,1572,1668,1720,1732

%N Discriminants of imaginary quadratic fields with class number 12 (negated).

%C 206 discriminants in this sequence (almost certainly but not proved).

%H Andrew Howroyd, <a href="/A046009/b046009.txt">Table of n, a(n) for n = 1..206</a>

%H Steven Arno, M. L. Robinson and Ferrel S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arithm. 83.4 (1998), 295-330

%H Duncan A. Buell, <a href="http://dx.doi.org/10.1090/S0025-5718-1977-0439802-X">Small class numbers and extreme values of L-functions of quadratic fields</a>, Math. Comp., 31 (1977), 786-796.

%H C. Wagner, <a href="http://dx.doi.org/10.1090/S0025-5718-96-00722-3">Class Number 5, 6 and 7</a>, Math. Comput. 65, 785-800, 1996.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number.</a>

%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>

%t Reap[ For[n = 1, n < 2000, n++, s = Sqrt[-n]; If[ NumberFieldClassNumber[s] == 12, d = -NumberFieldDiscriminant[s]; Print[d]; Sow[d]]]][[2, 1]] // Union (* _Jean-François Alcover_, Oct 05 2012 *)

%o (PARI) ok(n)={isfundamental(-n) && qfbclassno(-n) == 12} \\ _Andrew Howroyd_, Jul 24 2018

%o (Sage) [n for n in (1..3000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==12] # _G. C. Greubel_, Mar 01 2019

%Y Cf. A006203, A013658, A014602, A014603, A046002-A046020.

%Y Cf. A191410.

%K nonn,fini

%O 1,1

%A _Eric W. Weisstein_