Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 04 2022 21:21:37
%S 0,4,76,516,2148,6768,17600,40120,82608,157252,280988,477012,775172,
%T 1214768,1844512,2725000,3930384,5550844,7692300,10482124,14066996,
%U 18619128,24337056,31449200,40212160,50921316,63907468,79542108
%N Number of triangles in an n X n grid (or geoplane).
%C The triangles must have nonzero area -- their vertices must not be collinear.
%C The degenerate (i.e., collinear) triangles are counted in A000938. The 1000-term b-file there could be used to produce a 1000-term b-file for the present sequence. - _N. J. A. Sloane_, Jun 19 2020
%H Vaclav Kotesovec, <a href="/A045996/b045996.txt">Table of n, a(n) for n = 1..1000</a>
%H I. L. Canestro, <a href="http://www.math.niu.edu/~rusin/known-math/00_incoming/triangles_count">Checkerboard</a>, sci.math 22 Oct 2000 [broken link]
%H I. L. Canestro, <a href="/A045996/a045996.txt">Checkerboard</a>, sci.math 22 Oct 2000 [Cached copy]
%F a(n) = ((n-1)^2*n^2*(n+1)^2)/6 - 2*Sum_{m=2..n} Sum_{k=2..n} (n-k+1)*(n-m+1)*gcd(k-1, m-1).
%F a(n) = binomial(n^2,3) - A000938(n). - _R. J. Mathar_, May 21 2010
%e a(2)=4 because 4 isosceles right triangles can be placed on a 2 X 2 grid.
%t a[n_] := ((n - 1)^2*n^2*(n + 1)^2)/6 - 2*Sum[(n - k + 1)*(n - l + 1)*GCD[k - 1, l - 1], {k, 2, n}, {l, 2, n}]; Array[a, 28] (* _Robert G. Wilson v_, May 23 2010 *)
%Y Cf. A000938.
%K nice,nonn,easy
%O 1,2
%A _Ignacio Larrosa Cañestro_