login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rows of Fibonacci-Pascal triangle.
5

%I #36 Jan 10 2018 10:33:11

%S 1,1,1,1,1,1,1,2,2,1,1,3,8,3,1,1,5,55,55,5,1,1,8,610,6765,610,8,1,1,

%T 13,10946,9227465,9227465,10946,13,1,1,21,317811,225851433717,

%U 190392490709135,225851433717,317811,21,1,1,34,14930352

%N Rows of Fibonacci-Pascal triangle.

%H Reinhard Zumkeller, <a href="/A045995/b045995.txt">Rows n=0..14 of triangle, flattened</a>

%H R. Whitney, <a href="http://www.fq.math.ca/Scanned/13-3/advanced13-3.pdf">Problem H-254</a>, Fib. Quart., 13 (1975), p. 281.

%F Take Pascal triangle (A007318) and replace each i by Fibonacci(i): a(n,k)=Fibonacci(binomial(n,k)).

%e 1,

%e 1, 1,

%e 1, 1, 1,

%e 1, 2, 2, 1,

%e 1, 3, 8, 3, 1,

%e 1, 5, 55, 55, 5, 1,

%e 1, 8, 610, 6765, 610, 8, 1,

%e 1, 13, 10946, 9227465, 9227465, 10946, 13, 1,

%e 1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1,

%e ...

%p A045995 := proc(n,k)

%p combinat[fibonacci](binomial(n,k)) ;

%p end proc: # _R. J. Mathar_, Dec 03 2014

%t Flatten[Table[Fibonacci[Binomial[n,k]],{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, Dec 31 2013 *)

%o (Haskell)

%o a045995 n k = a045995_tabl !! n !! k

%o a045995_row n = a045995_tabl !! n

%o a045995_tabl = map (map (a000045 . fromInteger)) a007318_tabl

%o -- _Reinhard Zumkeller_, Dec 29 2011

%Y Cf. A000045, A007318, A006449 (row sums), A081667.

%Y Main diagonal gives A281450.

%K nonn,easy,nice,tabl

%O 0,8

%A _N. J. A. Sloane_

%E More terms from _David W. Wilson_