login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,...,n to 1,...,n.
5

%I #18 Mar 08 2020 04:46:47

%S 1,1,4,17,66,247,918,3425,12862,48611,184746,705421,2704144,10400587,

%T 40116586,155117505,601080374,2333606203,9075135282,35345263781,

%U 137846528800,538257874419,2104098963698,8233430727577,32247603683076

%N a(n) = binomial(2n,n) - n; number of (weakly) increasing or decreasing maps from 1,...,n to 1,...,n.

%H Harvey P. Dale, <a href="/A045992/b045992.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (x^2 - (sqrt(1-4*x)+2)*x + 1)/(sqrt(1-4*x)*(x-1)^2). - _Harvey P. Dale_, Apr 18 2014

%F D-finite with recurrence: n*a(n) + (-7*n+5)*a(n-1) + 3*(5*n-8)*a(n-2) + (-13*n+33)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - _R. J. Mathar_, Jan 28 2020

%e a(3)=17 since can map (1,2,3) to (1,1,1), (1,1,2), (1,1,3), (1,2,2), (1,2,3), (1,3,3), (2,1,1), (2,2,1), (2,2,2), (2,2,3), (2,3,3), (3,1,1), (3,2,1), (3,2,2), (3,3,1), (3,3,2), or (3,3,3) but not for example to (1,3,2).

%t Table[Binomial[2n,n]-n,{n,0,30}] (* or *) CoefficientList[Series[ (x^2- (Sqrt[1-4 x]+2) x+1)/(Sqrt[1-4 x] (x-1)^2),{x,0,30}],x] (* _Harvey P. Dale_, Apr 18 2014 *)

%Y Cf. A000312, A000984, A001700.

%K nonn

%O 0,3

%A _N. J. A. Sloane_