login
A045900
Hypothetical numbers of terms in general expressions for coefficients of Lovelock Lagrangians.
1
1, 1, 3, 8, 25, 85, 318, 1234, 4884, 19458, 77727, 310761, 1242853, 4971151, 19884270, 79536639, 318145993, 1272583241, 5090332042, 20361326983, 81445306447, 325781223902, 1303124893253, 5212499570050, 20849998276525, 83399993101506, 333599972400353
OFFSET
0,3
COMMENTS
Hypothetical extension of sequence A006372.
LINKS
C. C. Briggs, A General Expression for the Quintic Lovelock Tensor, arXiv:gr-qc/9607033, 1996-1997.
C. C. Briggs, A General Expression for the Quartic Lovelock Tensor, arXiv:gr-qc/9703074, 1997.
C. C. Briggs, Some Possible Features of General Expressions for Lovelock Tensors ..., arXiv:gr-qc/9808050, 1998-2000.
FORMULA
a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) + p(n+3) - 3*p(n+2) + 3*p(n+1) - p(n) + 2^(2*n + 1); a(n+4) = 7*a(n+3) - 15*a(n+2) + 13*a(n+1) - 4*a(n) + p(n+4) - 7*p(n+3) + 15*p(n+2) - 13*p(n+1) + 4*p(n); where p(n) is the partition function (i.e. number of partitions of n, A000041) and where p(0) = 1.
MATHEMATICA
p = PartitionsP;
a[n_] := a[n] = If[n < 4, {1, 1, 3, 8}[[n+1]], a[n-3] - 3*a[n-2] + 3*a[n-1] - p[n-3] + 3*p[n-2] - 3*p[n-1] + p[n] + 2^(2*(n-3) + 1)];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 24 2019 *)
CROSSREFS
Sequence in context: A038665 A172382 A151426 * A000738 A006372 A148798
KEYWORD
nonn
AUTHOR
C. C. Briggs (ccb104(AT)psu.edu)
EXTENSIONS
More terms from Jean-François Alcover, Feb 24 2019
STATUS
approved