login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045890
Catafusenes (see reference for precise definition).
1
1, 3, 12, 49, 204, 864, 3714, 16170, 71178, 316303, 1417248, 6396273, 29051856, 132700725, 609200640, 2809373915, 13008512040, 60457182345, 281919911460, 1318666411635, 6185356518660, 29088241615910, 137121834221346, 647821223533044, 3066862717614234, 14546629647573969
OFFSET
0,2
COMMENTS
3-fold convolution of A002212. - Emeric Deutsch, Mar 13 2004
FORMULA
G.f.: (1 - x - sqrt(1-6*x+5*x^2))^3/(8*x^3). - Emeric Deutsch, Mar 13 2004
a(n) = (3/n)*Sum_{j=1..n} binomial(n, j)*binomial(2j+2, j-1) for n >= 1. - Emeric Deutsch, Mar 25 2004
Recurrence: (n+2)*(n+3)*a(n) = 2*(n+2)*(3*n+4)*a(n-1) - 5*(n-2)*(n+3)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 6*5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
MAPLE
a := n->(3/n)*sum(binomial(n, j)*binomial(2*j+2, j-1), j=1..n): 1, seq(a(n), n=1..22);
MATHEMATICA
a[n_] := 3*(Hypergeometric2F1[5/2, 1-n, 5, -4] + (n-1)*Hypergeometric2F1[7/2, 2-n, 6, -4]); a[0]=1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jun 13 2012, after Emeric Deutsch *)
CoefficientList[Series[(1-x-Sqrt[1-6x+5x^2])^3/(8x^3), {x, 0, 30}], x] (* Harvey P. Dale, Feb 07 2015 *)
PROG
(PARI) x='x+O('x^66); Vec((1-x-sqrt(1-6*x+5*x^2))^3/(8*x^3)) \\ Joerg Arndt, May 04 2013
CROSSREFS
Cf. A002212.
Sequence in context: A037646 A012772 A012864 * A049673 A052703 A151170
KEYWORD
nonn,easy
EXTENSIONS
More terms from Emeric Deutsch, Mar 13 2004
STATUS
approved