login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 4-core partitions of n.
14

%I #59 Nov 23 2021 05:48:50

%S 1,1,2,3,1,3,3,3,4,4,2,2,7,3,5,6,2,4,7,3,4,7,5,8,5,4,4,8,5,6,7,2,9,11,

%T 3,8,9,4,6,5,7,5,14,7,4,10,5,10,11,3,9,10,5,8,10,4,6,15,8,9,10,6,8,15,

%U 6,10,6,5,15,9,6,8,14,8,6,13,5,16,18,7,8,7,9,6,15,6,12,17,5,8,15,7,12

%N Number of 4-core partitions of n.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Conjecturally Sum_n a(n)q^(8n+5) equals theta series of sodalite. - _Fred Lunnon_, Mar 05 2015

%C Dickson writes that Liouville proved several related theorems about sums of triangular numbers. - _Michael Somos_, Feb 10 2020

%D L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. II, p. 23.

%H Seiichi Manyama, <a href="/A045831/b045831.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from T. D. Noe)

%H M. Hirschhorn, and J. Sellers, <a href="http://dx.doi.org/10.1006/jnth.1996.0112">Some amazing facts about 4-cores</a>, J. Num. Thy. 60 (1996), 51-69.

%H K. Ono, and L. Sze, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa80/aa8035.pdf">4-core partitions and class numbers</a>, Acta. Arith. 80 (1997), 249-272.

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F eta(32*z)^4/eta(8*z) = Sum_{x, y, z} q^(x^2+2*y^2+2*z^2), x, y, z >= 1 and odd.

%F From _Michael Somos_, Mar 24 2003: (Start)

%F Euler transform of period 4 sequence [1, 1, 1, -3, ...].

%F Expansion of q^(-5/8) * eta(q^4)^4/eta(q) in powers of q.

%F (End)

%F Number of solutions to n=t1+2*t2+2*t3 where t1, t2, t3 are triangular numbers. - _Michael Somos_, Jan 02 2006

%F G.f.: Product_{k>0} (1-q^(4*k))^4/(1-q^k).

%F Expansion of psi(q) * psi(q^2)^2 in powers of q where psi() is a Ramanujan theta function. - _Michael Somos_, Sep 02 2008

%e G.f. = 1 + x + 2*x^2 + 3*x^3 + x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 4*x^9 + ...

%e G.f. = q^5 + q^13 + 2*q^21 + 3*q^29 + q^37 + 3*q^45 + 3*q^53 + 3*q^61 + 4*q^69 + ... ,

%e apparently the theta series of the sodalite net, aka edge-skeleton of space honeycomb by truncated octahedra. - _Fred Lunnon_, Mar 05 2015

%t QP = QPochhammer; s = QP[q^4]^4/QP[q] + O[q]^100; CoefficientList[s, q] (* _Jean-François Alcover_, Jul 26 2011, updated Nov 29 2015 *)

%o (PARI)

%o {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^4 / eta(x + A), n))}; /* _Michael Somos_, Mar 24 2003 */

%Y A004024/4, column t=4 of A175595.

%Y Cf. A286953.

%Y Cf. A008443, A045818, A213624.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Feb 11 2000