login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045826
a(n) = A005887(n) / 2.
6
3, 4, 12, 0, 15, 12, 12, 0, 24, 12, 24, 0, 15, 16, 36, 0, 24, 24, 12, 0, 48, 12, 36, 0, 27, 24, 36, 0, 24, 36, 36, 0, 48, 12, 48, 0, 24, 28, 48, 0, 51, 36, 24, 0, 72, 24, 24, 0, 24, 36, 84, 0, 48, 36
OFFSET
0,1
LINKS
FORMULA
Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 4 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Mar 12 2011
A005875(2*n + 1) = 2 * a(n). - Michael Somos, Mar 12 2011
EXAMPLE
3 + 4*x + 12*x^2 + 15*x^4 + 12*x^5 + 12*x^6 + 24*x^8 + 12*x^9 + ...
3*q + 4*q^3 + 12*q^5 + 15*q^9 + 12*q^11 + 12*q^13 + 24*q^17 + 12*q^19 + ...
MATHEMATICA
A005887[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]^3 - EllipticTheta[3, 0, -q]^3)/(2 q), {q, 0, n}]; Table[A005887[n]/2, {n, 0, 50}][[1;; ;; 2]] (* G. C. Greubel, Feb 09 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x*O(x^n))^3 / 2, n))} /* Michael Somos, Mar 12 2011 */
CROSSREFS
Sequence in context: A041299 A001112 A042079 * A346471 A084200 A348997
KEYWORD
nonn
STATUS
approved