Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Mar 16 2023 08:50:40
%S 1,7,43,49,101,107,143,149,201,207,243,249,301,307,343,349,401,407,
%T 443,449,501,507,543,549,601,607,643,649,701,707,743,749,801,807,843,
%U 849,901,907,943,949,1001,1007,1043,1049,1101,1107,1143,1149,1201,1207
%N 0-ish numbers (end in 01, 07, 43, 49).
%H Reinhard Zumkeller, <a href="/A045800/b045800.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F G.f.: x*(1+6*x+36*x^2+6*x^3+51*x^4)/(1-x-x^4+x^5). - _Colin Barker_, Jan 23 2012
%F a(n) = (50*n-8*i^(n*(n+1))-19*(-1)^n-75)/2, where i=sqrt(-1). - _Bruno Berselli_, Feb 22 2012
%t LinearRecurrence[{1,0,0,1,-1},{1,7,43,49,101},60] (* _Harvey P. Dale_, Jul 26 2015 *)
%o (Haskell)
%o import Data.List (findIndices)
%o a045800 n = a045800_list !! (n-1)
%o a045800_list = findIndices (`elem` [1,7,43,49]) $ cycle [0..99]
%o -- _Reinhard Zumkeller_, Jan 23 2012
%Y Cf. A045801-A045809, A045572, A045797, A045798.
%K nonn,base,easy
%O 1,2
%A _J. H. Conway_.
%E More terms from _Erich Friedman_.