login
A045745
Numbers n such that sum of proper divisors s(n) is a triangular number T(k).
2
1, 2, 3, 4, 5, 6, 7, 11, 13, 14, 16, 17, 18, 19, 23, 24, 25, 28, 29, 31, 33, 36, 37, 41, 43, 47, 51, 53, 54, 59, 61, 66, 67, 71, 73, 79, 83, 89, 91, 97, 101, 103, 107, 109, 112, 113, 123, 127, 131, 135, 137, 139, 149, 151, 157, 163, 167, 172, 173, 179, 181, 191, 193
OFFSET
1,2
LINKS
EXAMPLE
s(14)=1+2+7=10 is a triangular number. In fact T(4)=10.
MAPLE
select(t -> issqr(1+8*(numtheory:-sigma(t)-t)), [$1..1000]); # Robert Israel, Dec 25 2016
MATHEMATICA
tri[ n_ ] := Module[ {}, a=Floor[ N[ Sqrt[ 2n ] ] ]; a(a+1)/2==n ]; Select[ Range[ 300 ], tri[ Apply[ Plus, Divisors[ # ] ]-# ]& ]
CROSSREFS
Cf. A000217.
Sequence in context: A115037 A280536 A090563 * A054010 A051948 A193461
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Erich Friedman
STATUS
approved