Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 17 2024 10:32:18
%S 1,13,144,1597,10946,17711,121393,196418,1346269,14930352,102334155,
%T 165580141,1134903170,1836311903,12586269025,139583862445,
%U 1548008755920,10610209857723,17167680177565,117669030460994,190392490709135,1304969544928657,14472334024676221,160500643816367088
%N Fibonacci numbers having initial digit '1'.
%t Select[Fibonacci[Range[2, 100]], IntegerDigits[#, 10][[1]] == 1 &] (* _T. D. Noe_, Nov 01 2006 *)
%o (PARI) select(x->(digits(x)[1] == 1), vector(85, n, fibonacci(n+1))) \\ _Michel Marcus_, Jan 30 2019
%o (Magma) [Fibonacci(n): n in [2..100] | Intseq(Fibonacci(n))[#Intseq(Fibonacci(n))] eq 1]; // _Vincenzo Librandi_, Jan 30 2019
%o (Scala) def fibonacci(n: BigInt): BigInt = {
%o val zero = BigInt(0)
%o def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
%o case `zero` => a
%o case _ => fibTail(n - 1, b, a + b)
%o }
%o fibTail(n, 0, 1)
%o } // Tail recursion by Dario Carrrasquel
%o ((2 to 100).map(fibonacci(_))).filter(_.toString.startsWith("1")) // _Alonso del Arte_, Apr 22 2019
%Y Cf. A105501.
%Y Intersection of A000045 and A131835.
%K nonn,base
%O 1,2
%A _Jeff Burch_
%E Corrected by _T. D. Noe_, Nov 01 2006