Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 31 2023 16:25:22
%S 3,7,8,15,24,26,31,35,48,63,80,99,120,124,127,143,168,195,215,224,242,
%T 255,288,323,342,360,399,440,483,511,528,575,624,675,728,783,840,899,
%U 960,999,1023,1088,1155,1224,1295,1330,1368,1443,1520,1599,1680,1727
%N Sub-perfect powers: perfect powers (squares, cubes etc.) minus 1.
%C Goldbach showed that Sum 1/a(n) = 1, see A214390, A214391.
%C The only primes in the sequence are 3,7,31,127,... the Mersenne primes (A000668). - _Zak Seidov_, Dec 08 2011
%C Repdigits of two or more digits, interpreted in the smallest possible base. E.g., the smallest base for 222 is 3, 222 in base 3 is 26, and 26 is in the sequence. - _Franklin T. Adams-Watters_, Aug 11 2014
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd edition, p. 66.
%H Reinhard Zumkeller, <a href="/A045542/b045542.txt">Table of n, a(n) for n = 1..10000</a>
%H L. Bibiloni, P. Viader, and J. Paradis, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/bibiloni206.pdf">On a Series of Goldbach and Euler</a>, Amer. Math. Monthly, 113 (2006), pp. 206-220.
%F a(n) = A001597(n + 1) - 1.
%t f[upto_] := Union[Flatten[Table[n^pwr - 1, {pwr, 2, Log[2,upto+1]}, {n, 2, (upto+1)^(1/pwr)}]]]; f[1763] (* _Zak Seidov_, Dec 08 2011 *)
%t Select[Range[2000],GCD@@FactorInteger[#][[All,2]]>1&]-1 (* _Harvey P. Dale_, Jan 31 2023 *)
%o (Haskell)
%o a045542 n = a045542_list !! (n-1)
%o a045542_list = map (subtract 1) $ tail a001597_list
%o -- _Reinhard Zumkeller_, Jul 15 2012
%o (PARI) list(lim)=my(v=List()); for(e=2,logint(lim\=1,2), for(k=2,sqrtnint(lim,e), listput(v,k^e-1))); Set(v) \\ _Charles R Greathouse IV_, Aug 26 2015
%Y Cf. A000668, A001597.
%K easy,nice,nonn
%O 1,1
%A William M. Glasgow (billg(AT)wakely.com)
%E More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2002