Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 28 2018 04:13:15
%S 1,7,78,364,1365,4380,12520,32772,80094,185276,409578,871272,1792754,
%T 3582708,6977100,13277472,24747867,45267324,81389908,144048396,
%U 251265288,432425864,734953116,1234647216,2051576037
%N McKay-Thompson series of class 6B for Monster with a(0) = 7.
%H G. C. Greubel, <a href="/A045485/b045485.txt">Table of n, a(n) for n = -1..1000</a>
%H I. Chen and N. Yui, <a href="http://people.math.sfu.ca/~ichen/pub/chen-yui.pdf">Singular values of Thompson series</a>. In Groups, difference sets and the Monster (Columbus, OH, 1993), pp. 255-326, Ohio State University Mathematics Research Institute Publications, 4, de Gruyter, Berlin, 1996.
%H J. H. Conway and S. P. Norton, <a href="https://doi.org/10.1112/blms/11.3.308">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979) 308-339.
%H D. Ford, J. McKay and S. P. Norton, <a href="https://dx.doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra 22, No. 13, 5175-5193 (1994).
%H J. McKay and H. Strauss, <a href="https://dx.doi.org/10.1080/00927879008823911">The q-series of monstrous moonshine and the decomposition of the head characters</a>, Comm. Algebra 18 (1990), no. 1, 253-278.
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%F Expansion of -5 + (eta(q^2)*eta(q^3)/(eta(q)*eta(q^6)))^12 in powers of q. - _G. C. Greubel_, Jun 12 2018
%F a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (2^(3/4) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 26 2018
%t eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-5 + (eta[q^2]*eta[q^3]/(eta[q]*eta[q^6]))^12), {q, 0, 60}], q];
%t Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 12 2018 *)
%o (PARI) q='q+O('q^30); A=-5+(eta(q^2)*eta(q^3)/(eta(q)*eta(q^6)))^12/q; Vec(A) \\ _G. C. Greubel_, Jun 12 2018
%Y Cf. A007255.
%K nonn
%O -1,2
%A _N. J. A. Sloane_