login
A045483
McKay-Thompson series of class 5B for the Monster group with a(0) = 1.
3
1, 1, 9, 10, -30, 6, -25, 96, 60, -250, 45, -150, 544, 360, -1230, 184, -675, 2310, 1410, -4830, 750, -2450, 8196, 4920, -16180, 2376, -7875, 25644, 15000, -48720, 7126, -22800, 73221, 42310
OFFSET
-1,3
LINKS
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
FORMULA
Expansion of 7 + (eta(q) / eta(q^5))^6 in powers of q. - Michael Somos, May 22 2013
a(n) = A007252(n) = A106248(n) unless n=0.
a(n) = A229793(n) - A078905(n) for n > 0. - Seiichi Manyama, Jan 01 2017
EXAMPLE
1/q + 1 + 9*q + 10*q^2 - 30*q^3 + 6*q^4 - 25*q^5 + 96*q^6 + 60*q^7 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 7 + 1/q (QPochhammer[ q] / QPochhammer[ q^5])^6, {q, 0, n}] (* Michael Somos, May 22 2013 *)
PROG
(PARI) q='q+O('q^30); a= 7 + (eta(q)/eta(q^5))^6/q; Vec(a) \\ G. C. Greubel, Jun 02 2018
CROSSREFS
Cf. A007252, A106248 (same except for initial terms).
Sequence in context: A041170 A041168 A042635 * A007252 A322653 A322465
KEYWORD
sign
STATUS
approved