login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045238
Numbers whose base-5 representation contains exactly one 1 and two 3's.
1
43, 83, 91, 143, 193, 203, 213, 215, 217, 219, 223, 243, 293, 333, 341, 383, 391, 403, 413, 415, 417, 419, 423, 433, 441, 451, 455, 457, 459, 461, 471, 483, 491, 543, 583, 591, 643, 693, 703, 713, 715, 717, 719, 723, 743, 893
OFFSET
1,1
LINKS
MAPLE
A0[1]:= {2, 4}:
A1[1]:= {1}:
A3[1]:= {3}:
A13[1]:= {}:
A33[1]:= {}:
A133[1]:= {}:
count:= 0:
for n from 2 while count < 1000 do
A0[n]:= map(t -> (5*t, 5*t+2, 5*t+4), A0[n-1]);
A1[n]:= map(t -> (5*t, 5*t+2, 5*t+4), A1[n-1]) union map(t -> 5*t+1, A0[n-1]);
A3[n]:= map(t -> (5*t, 5*t+2, 5*t+4), A3[n-1]) union map(t -> 5*t+3, A0[n-1]);
A13[n]:= map(t -> (5*t, 5*t+2, 5*t+4), A13[n-1]) union map(t -> 5*t+1, A3[n-1]) union map(t -> 5*t+3, A1[n-1]);
A33[n]:= map(t -> (5*t, 5*t+2, 5*t+4), A33[n-1]) union map(t -> 5*t+3, A3[n-1]);
A133[n]:= map(t -> (5*t, 5*t+2, 5*t+4), A133[n-1]) union map(t -> 5*t+1, A33[n-1]) union map(t -> 5*t+3, A13[n-1]);
count:= count + nops(A133[n]);
od:
sort([seq(op(A133[i]), i=1..n-1)]); # Robert Israel, Dec 10 2023
MATHEMATICA
Select[Range[900], DigitCount[#, 5, 1]==1&&DigitCount[#, 5, 3]==2&] (* Harvey P. Dale, Dec 16 2017 *)
CROSSREFS
Cf. A007091.
Sequence in context: A236839 A183074 A289730 * A139982 A171252 A119487
KEYWORD
nonn,base
STATUS
approved