Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 04 2023 16:53:02
%S 6,11,15,19,21,32,34,38,42,46,48,58,64,66,95,97,103,113,115,119,123,
%T 127,129,139,145,147,175,193,199,201,284,286,292,310,338,340,346,356,
%U 358,362,366,370,372,382,388,390,418,436,442,444
%N Numbers whose base-3 representation contains exactly one 0 and one 2.
%H Robert Israel, <a href="/A044995/b044995.txt">Table of n, a(n) for n = 1..10000</a>
%p F:= proc(n) local i,j,t;
%p t:= (3^n-1)/2;
%p op(sort([seq(seq(t - 3^i + 3^j, i= {$0..j-1, $j+1..n-2}),j=0..n-1)]))
%p end proc:
%p map(F, [$2..7]); # _Robert Israel_, Mar 11 2020
%t Select[Range[500],DigitCount[#,3,0]==DigitCount[#,3,2]==1&] (* _Harvey P. Dale_, Sep 04 2023 *)
%o (Python)
%o from sympy.ntheory import count_digits
%o def ok(n): d = count_digits(n, 3); return d[0] == 1 and d[2] == 1
%o print(list(filter(ok, range(500)))) # _Michael S. Branicky_, Jun 11 2021
%Y Subsequence of A039276.
%Y Cf. A007089, A005823.
%K nonn,base,look
%O 1,1
%A _Clark Kimberling_