login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of runs in base-15 representation of n.
4

%I #15 Apr 23 2021 21:53:53

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,

%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,

%U 2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2

%N Number of runs in base-15 representation of n.

%C Every positive integers occurs infinitely many times. See A297770 for a guide to related sequences.

%H Antti Karttunen, <a href="/A043567/b043567.txt">Table of n, a(n) for n = 0..65537</a>

%e For n = 226, its base-15 representation is "101" as 226 = 1*(15^2) + 0*(15^1) + 1*(15^0). "101" has three runs, thus a(226) = 3.

%e For n = 482, its base-15 representation is "222" as 482 = 2*(15^2) + 2*(15^1) + 2*(15^0). "222" has just one run, thus a(482) = 1.

%t Table[Length@ Split@ IntegerDigits[n, 15], {n, 0, 105}] (* _Michael De Vlieger_, Oct 10 2017 *)

%o (Scheme) (define (A043567 n) (let loop ((n n) (runs 1) (pd (modulo n 15))) (if (zero? n) runs (let ((d (modulo n 15))) (loop (/ (- n d) 15) (+ runs (if (not (= d pd)) 1 0)) d))))) ;; _Antti Karttunen_, Oct 10 2017

%Y Cf. A043289, A043542, A297783 (number of distinct runs), A297770.

%K nonn,base

%O 0,16

%A _Clark Kimberling_

%E More terms from _Antti Karttunen_, Oct 10 2017

%E Updated by _Clark Kimberling_, Feb 04 2018