Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 26 2022 23:36:50
%S 31,32,63,95,158,253,1676,3605,8886,136895,282676,702247,4496158,
%T 5198405,9694563,14892968,24587531,39480499,2472378469,2511858968,
%U 4984237437,7496096405,12480333842,19976430247,132338915324,284654260895,701647437114,10809365817605,22320379072324
%N Numerators of continued fraction convergents to sqrt(1000).
%H Vincenzo Librandi, <a href="/A042936/b042936.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_36">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 78960998, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
%t Numerator[Convergents[Sqrt[1000], 30]] (* _Harvey P. Dale_, Oct 29 2013 *)
%o From _M. F. Hasler_, Nov 01 2019: (Start)
%o (PARI) A42936=contfracpnqn(c=contfrac(sqrt(1000)), #c)[1,][^-1] \\ Discards possibly incorrect last term. NB: a(n)=A42936[n+1]. Could be extended using: {A42936=concat(A42936, 78960998*A42936[-18..-1]-A42936[-36..-19])}
%o \\ But terms with arbitrarily large indices can be computed using:
%o A042936(n)={[A42936[n%18+i]|i<-[1, 19]]*([0, -1; 1, 78960998]^(n\18))[,1]} \\ Faster but longer with n=divrem(n,18). (End)
%Y Cf. A042937 (denominators).
%Y Analog for sqrt(m): A001333 (m=2), A002531 (m=3), A001077 (m=5), A041006 (m=6), A041008 (m=7), A041010 (m=8), A005667 (m=10), A041014 (m=11), ..., A042934 (m=999).
%K nonn,frac,easy
%O 0,1
%A _N. J. A. Sloane_