login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042885
Denominators of continued fraction convergents to sqrt(974).
2
1, 4, 5, 19, 24, 43, 67, 780, 847, 5015, 15892, 132151, 148043, 280194, 428237, 708431, 21681167, 22389598, 44070765, 66460363, 110531128, 950709387, 2962659289, 15764005832, 18726665121, 221757322163, 240483987284, 462241309447, 702725296731, 2570417199640
OFFSET
0,2
LINKS
Andy Huchala, Table of n, a(n) for n = 0..2134 (first 201 terms from Vincenzo Librandi)
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 977651490470430, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
a(n) = 977651490470430*a(n-32) - a(n-64) for n > 63. - Vincenzo Librandi, Jan 31 2014
G.f.: p/q with p,q given in Sage program. - Andy Huchala, Mar 06 2022
MATHEMATICA
Denominator[Convergents[Sqrt[974], 30]] (* Harvey P. Dale, Feb 07 2012 *)
PROG
(Sage)
R.<x> = PowerSeriesRing(ZZ, 100)
p = -x^62 + 4*x^61 - 5*x^60 + 19*x^59 - 24*x^58 + 43*x^57 - 67*x^56 + 780*x^55 - 847*x^54 + 5015*x^53 - 15892*x^52 + 132151*x^51 - 148043*x^50 + 280194*x^49 - 428237*x^48 + 708431*x^47 - 21681167*x^46 + 22389598*x^45 - 44070765*x^44 + 66460363*x^43 - 110531128*x^42 + 950709387*x^41 - 2962659289*x^40 + 15764005832*x^39 - 18726665121*x^38 + 221757322163*x^37 - 240483987284*x^36 + 462241309447*x^35 - 702725296731*x^34 + 2570417199640*x^33 - 3273142496371*x^32 + 15662987185124*x^31 + 3273142496371*x^30 + 2570417199640*x^29 + 702725296731*x^28 + 462241309447*x^27 + 240483987284*x^26 + 221757322163*x^25 + 18726665121*x^24 + 15764005832*x^23 + 2962659289*x^22 + 950709387*x^21 + 110531128*x^20 + 66460363*x^19 + 44070765*x^18 + 22389598*x^17 + 21681167*x^16 + 708431*x^15 + 428237*x^14 + 280194*x^13 + 148043*x^12 + 132151*x^11 + 15892*x^10 + 5015*x^9 + 847*x^8 + 780*x^7 + 67*x^6 + 43*x^5 + 24*x^4 + 19*x^3 + 5*x^2 + 4*x + 1
q = x^64 - 977651490470430*x^32 + 1
(p/q).list() # Andy Huchala, Mar 06 2022
CROSSREFS
Sequence in context: A308485 A234143 A217686 * A042085 A136211 A041036
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Vincenzo Librandi, Jan 31 2014
STATUS
approved