OFFSET
0,2
LINKS
Andy Huchala, Table of n, a(n) for n = 0..2134 (first 201 terms from Vincenzo Librandi)
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 977651490470430, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
a(n) = 977651490470430*a(n-32) - a(n-64) for n > 63. - Vincenzo Librandi, Jan 31 2014
G.f.: p/q with p,q given in Sage program. - Andy Huchala, Mar 06 2022
MATHEMATICA
Denominator[Convergents[Sqrt[974], 30]] (* Harvey P. Dale, Feb 07 2012 *)
PROG
(Sage)
R.<x> = PowerSeriesRing(ZZ, 100)
p = -x^62 + 4*x^61 - 5*x^60 + 19*x^59 - 24*x^58 + 43*x^57 - 67*x^56 + 780*x^55 - 847*x^54 + 5015*x^53 - 15892*x^52 + 132151*x^51 - 148043*x^50 + 280194*x^49 - 428237*x^48 + 708431*x^47 - 21681167*x^46 + 22389598*x^45 - 44070765*x^44 + 66460363*x^43 - 110531128*x^42 + 950709387*x^41 - 2962659289*x^40 + 15764005832*x^39 - 18726665121*x^38 + 221757322163*x^37 - 240483987284*x^36 + 462241309447*x^35 - 702725296731*x^34 + 2570417199640*x^33 - 3273142496371*x^32 + 15662987185124*x^31 + 3273142496371*x^30 + 2570417199640*x^29 + 702725296731*x^28 + 462241309447*x^27 + 240483987284*x^26 + 221757322163*x^25 + 18726665121*x^24 + 15764005832*x^23 + 2962659289*x^22 + 950709387*x^21 + 110531128*x^20 + 66460363*x^19 + 44070765*x^18 + 22389598*x^17 + 21681167*x^16 + 708431*x^15 + 428237*x^14 + 280194*x^13 + 148043*x^12 + 132151*x^11 + 15892*x^10 + 5015*x^9 + 847*x^8 + 780*x^7 + 67*x^6 + 43*x^5 + 24*x^4 + 19*x^3 + 5*x^2 + 4*x + 1
q = x^64 - 977651490470430*x^32 + 1
(p/q).list() # Andy Huchala, Mar 06 2022
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Jan 31 2014
STATUS
approved