login
Numerators of continued fraction convergents to sqrt(945).
2

%I #12 Jun 13 2015 00:49:48

%S 30,31,92,123,830,10083,61328,71411,204150,275561,16737810,17013371,

%T 50764552,67777923,457432090,5556963003,33799210108,39356173111,

%U 112511556330,151867729441,9224575322790,9376443052231,27977461427252,37353904479483,252100888304150

%N Numerators of continued fraction convergents to sqrt(945).

%H Vincenzo Librandi, <a href="/A042828/b042828.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,551122,0,0,0,0,0,0,0,0,0,-1).

%F G.f.: -(x^19 -30*x^18 +31*x^17 -92*x^16 +123*x^15 -830*x^14 +10083*x^13 -61328*x^12 +71411*x^11 -204150*x^10 -275561*x^9 -204150*x^8 -71411*x^7 -61328*x^6 -10083*x^5 -830*x^4 -123*x^3 -92*x^2 -31*x -30) / (x^20 -551122*x^10 +1). - _Colin Barker_, Dec 24 2013

%t Numerator[Convergents[Sqrt[945], 30]] (* _Vincenzo Librandi_, Dec 06 2013 *)

%Y Cf. A042829, A040914.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 24 2013