login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(927).
2

%I #18 Mar 18 2017 18:07:35

%S 30,61,274,1431,4567,24266,101631,227528,13753311,27734150,124689911,

%T 651183705,2078241026,11042388835,46247796366,103537981567,

%U 6258526690386,12620591362339,56740892139742,296325052061049,945716048322889,5024905293675494,21045337223024865

%N Numerators of continued fraction convergents to sqrt(927).

%H Vincenzo Librandi, <a href="/A042792/b042792.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 455056, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^15 -30*x^14 +61*x^13 -274*x^12 +1431*x^11 -4567*x^10 +24266*x^9 -101631*x^8 -227528*x^7 -101631*x^6 -24266*x^5 -4567*x^4 -1431*x^3 -274*x^2 -61*x -30) / (x^16 -455056*x^8 +1). - _Colin Barker_, Dec 23 2013

%p convert(sqrt(927), confrac, 30, cvgts): numer(cvgts); # _Wesley Ivan Hurt_, Dec 23 2013

%t Numerator[Convergents[Sqrt[927], 30]] (* _Harvey P. Dale_, May 31 2013 *)

%Y Cf. A042793, A040896.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 23 2013