login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(909).
2

%I #16 Mar 18 2017 17:59:04

%S 30,181,211,603,3829,8261,12090,80801,4860150,29241701,34101851,

%T 97445403,618774269,1334993941,1953768210,13057603201,785409960270,

%U 4725517364821,5510927325091,15747372015003,99995159415109,215737690845221,315732850260330

%N Numerators of continued fraction convergents to sqrt(909).

%H Vincenzo Librandi, <a href="/A042756/b042756.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 161602, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^15 -30*x^14 +181*x^13 -211*x^12 +603*x^11 -3829*x^10 +8261*x^9 -12090*x^8 -80801*x^7 -12090*x^6 -8261*x^5 -3829*x^4 -603*x^3 -211*x^2 -181*x -30) / ((x^4 -20*x^2 -1)*(x^4 +20*x^2 -1)*(x^8 +402*x^4 +1)). - _Colin Barker_, Dec 23 2013

%t Numerator[Convergents[Sqrt[909], 30]] (* _Vincenzo Librandi_, Dec 04 2013 *)

%Y Cf. A042757, A040878.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 23 2013