login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042615 Denominators of continued fraction convergents to sqrt(836). 2
1, 1, 11, 12, 23, 58, 81, 139, 1471, 1610, 91631, 93241, 1024041, 1117282, 2141323, 5399928, 7541251, 12941179, 136953041, 149894220, 8531029361, 8680923581, 95340265171, 104021188752, 199361453923, 502744096598, 702105550521, 1204849647119, 12750602021711 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 93102, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

FORMULA

G.f.: -(x^18 -x^17 +11*x^16 -12*x^15 +23*x^14 -58*x^13 +81*x^12 -139*x^11 +1471*x^10 -1610*x^9 -1471*x^8 -139*x^7 -81*x^6 -58*x^5 -23*x^4 -12*x^3 -11*x^2 -x -1) / (x^20 -93102*x^10 +1). - Colin Barker, Dec 20 2013

MATHEMATICA

Denominator[Convergents[Sqrt[836], 30]] (* Vincenzo Librandi, Jan 25 2014 *)

CROSSREFS

Cf. A042614, A040807.

Sequence in context: A092778 A041248 A112063 * A041244 A041242 A042019

Adjacent sequences:  A042612 A042613 A042614 * A042616 A042617 A042618

KEYWORD

nonn,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Colin Barker, Dec 20 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 20:37 EST 2021. Contains 349596 sequences. (Running on oeis4.)