login
Numerators of continued fraction convergents to sqrt(815).
2

%I #15 Mar 18 2017 17:31:16

%S 28,29,57,257,314,885,4739,10363,15102,70771,85873,156644,8857937,

%T 9014581,17872518,80504653,98377171,277258995,1484672146,3246603287,

%U 4731275433,22171705019,26902980452,49074685471,2775085366828,2824160052299,5599245419127

%N Numerators of continued fraction convergents to sqrt(815).

%H Vincenzo Librandi, <a href="/A042572/b042572.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 313288, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^23 -28*x^22 +29*x^21 -57*x^20 +257*x^19 -314*x^18 +885*x^17 -4739*x^16 +10363*x^15 -15102*x^14 +70771*x^13 -85873*x^12 -156644*x^11 -85873*x^10 -70771*x^9 -15102*x^8 -10363*x^7 -4739*x^6 -885*x^5 -314*x^4 -257*x^3 -57*x^2 -29*x -28) / (x^24 -313288*x^12 +1). - _Colin Barker_, Dec 18 2013

%t Numerator[Convergents[Sqrt[815], 30]] (* _Vincenzo Librandi_, Nov 28 2013 *)

%Y Cf. A042573, A040786.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 18 2013