login
Numerators of continued fraction convergents to sqrt(804).
2

%I #14 Mar 18 2017 17:28:15

%S 28,57,85,397,879,16219,33317,149487,182804,515095,29028124,58571343,

%T 87599467,408969211,905537889,16708651213,34322840315,154000012473,

%U 188322852788,530645718049,29904483063532,60339611845113,90244094908645,421315991479693

%N Numerators of continued fraction convergents to sqrt(804).

%H Vincenzo Librandi, <a href="/A042550/b042550.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 1030190, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^19 -28*x^18 +57*x^17 -85*x^16 +397*x^15 -879*x^14 +16219*x^13 -33317*x^12 +149487*x^11 -182804*x^10 -515095*x^9 -182804*x^8 -149487*x^7 -33317*x^6 -16219*x^5 -879*x^4 -397*x^3 -85*x^2 -57*x -28) / (x^20 -1030190*x^10 +1). - _Colin Barker_, Dec 18 2013

%t Numerator[Convergents[Sqrt[804], 30]] (* _Vincenzo Librandi_, Nov 28 2013 *)

%Y Cf. A042551, A040775.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 18 2013