login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(785).
3

%I #27 Dec 26 2023 07:03:58

%S 28,1569,87892,4923521,275805068,15450007329,865476215492,

%T 48482118074881,2715864088408828,152136871068969249,

%U 8522380643950686772,477405452932307428481,26743227744853166681708,1498098159164709641604129,83920240140968593096512932

%N Numerators of continued fraction convergents to sqrt(785).

%H Vincenzo Librandi, <a href="/A042512/b042512.txt">Table of n, a(n) for n = 0..200</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (56, 1).

%F a(n) = 56*a(n-1)+a(n-2) for n>1, a(0)=28, a(1)=1569. G.f.: (28+x)/(1-56*x-x^2). [_Philippe Deléham_, Nov 23 2008]

%t Numerator[Convergents[Sqrt[785], 30]] (* _Vincenzo Librandi_, Nov 25 2013 *)

%Y Cf. A042513, A040756.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E Additional term from _Colin Barker_, Dec 17 2013