This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042508 Numerators of continued fraction convergents to sqrt(782). 2
 27, 28, 755, 783, 43037, 43820, 1182357, 1226177, 67395915, 68622092, 1851570307, 1920192399, 105541959853, 107462152252, 2899557918405, 3007020070657, 165278641733883, 168285661804540, 4540705848651923 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0,0,0,1566,0,0,0,-1). FORMULA G.f.: (27 +28*x +755*x^2 +783*x^3 +755*x^4 -28*x^5 +27*x^6 -x^7)/(1 -1566*x^4 +x^8). - Vincenzo Librandi, Nov 26 2013 a(n) = 1566*a(n-4) - a(n-8). - Vincenzo Librandi, Nov 26 2013 MATHEMATICA Numerator[Convergents[Sqrt[782], 30]] (* or *) CoefficientList[Series[(27 + 28 x + 755 x^2 + 783 x^3 + 755 x^4 - 28 x^5 + 27 x^6 - x^7)/(1 - 1566 x^4 + x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 25 2013 *) PROG (MAGMA) I:=[27, 28, 755, 783, 43037, 43820, 1182357, 1226177]; [n le 8 select I[n] else 1566*Self(n-4)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, Nov 26 2013 CROSSREFS Cf. A042509. Sequence in context: A042504 A042506 A041363 * A042509 A042510 A157251 Adjacent sequences:  A042505 A042506 A042507 * A042509 A042510 A042511 KEYWORD nonn,cofr,frac,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)