The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042491 Denominators of continued fraction convergents to sqrt(773). 2
 1, 1, 5, 66, 71, 208, 487, 695, 9522, 38783, 48305, 2647253, 2695558, 13429485, 177278863, 190708348, 558695559, 1308099466, 1866795025, 25576434791, 104172534189, 129748968980, 7110616859109, 7240365828089, 36072080171465, 476177408057134, 512249488228599 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2686036, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). FORMULA G.f.: -(x^20 -x^19 +5*x^18 -66*x^17 +71*x^16 -208*x^15 +487*x^14 -695*x^13 +9522*x^12 -38783*x^11 +48305*x^10 +38783*x^9 +9522*x^8 +695*x^7 +487*x^6 +208*x^5 +71*x^4 +66*x^3 +5*x^2 +x +1) / (x^22 +2686036*x^11 -1). - Colin Barker, Dec 15 2013 a(n) = 2686036*a(n-11) + a(n-22). - Vincenzo Librandi, Dec 15 2013 MATHEMATICA Denominator[Convergents[Sqrt[773], 30]] (* Vincenzo Librandi, Dec 15 2013 *) PROG (Magma) I:=[1, 1, 5, 66, 71, 208, 487, 695, 9522, 38783, 48305, 2647253, 2695558, 13429485, 177278863, 190708348, 558695559, 1308099466, 1866795025, 25576434791, 104172534189, 129748968980]; [n le 22 select I[n] else 2686036*Self(n-11)+Self(n-22): n in [1..40]]; // Vincenzo Librandi, Dec 15 2013 CROSSREFS Cf. A042490, A040745. Sequence in context: A195516 A167536 A237887 * A183899 A263784 A263785 Adjacent sequences: A042488 A042489 A042490 * A042492 A042493 A042494 KEYWORD nonn,frac,easy AUTHOR N. J. A. Sloane. EXTENSIONS More terms from Colin Barker, Dec 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 11:06 EDT 2024. Contains 376010 sequences. (Running on oeis4.)