login
Numerators of continued fraction convergents to sqrt(773).
2

%I #16 Mar 18 2017 16:43:39

%S 27,28,139,1835,1974,5783,13540,19323,264739,1078279,1343018,73601251,

%T 74944269,373378327,4928862520,5302240847,15533344214,36368929275,

%U 51902273489,711098484632,2896296212017,3607394696649,197695609831063,201303004527712

%N Numerators of continued fraction convergents to sqrt(773).

%H Vincenzo Librandi, <a href="/A042490/b042490.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2686036, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%F G.f.: -(x^21 -27*x^20 +28*x^19 -139*x^18 +1835*x^17 -1974*x^16 +5783*x^15 -13540*x^14 +19323*x^13 -264739*x^12 +1078279*x^11 +1343018*x^10 +1078279*x^9 +264739*x^8 +19323*x^7 +13540*x^6 +5783*x^5 +1974*x^4 +1835*x^3 +139*x^2 +28*x +27) / (x^22 +2686036*x^11 -1). - _Colin Barker_, Dec 15 2013

%t Numerator[Convergents[Sqrt[773], 30]] (* _Harvey P. Dale_, May 01 2013 *)

%Y Cf. A042491, A040745.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 15 2013