login
Denominators of continued fraction convergents to sqrt(768).
2

%I #15 Mar 19 2017 10:52:08

%S 1,1,3,7,94,195,484,679,37150,37829,112808,263445,3537593,7338631,

%T 18214855,25553486,1398103099,1423656585,4245416269,9914489123,

%U 133133774868,276182038859,685497852586,961679891445,52616211990616,53577891882061,159771995754738

%N Denominators of continued fraction convergents to sqrt(768).

%H Vincenzo Librandi, <a href="/A042481/b042481.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 37634, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^14 -x^13 +3*x^12 -7*x^11 +94*x^10 -195*x^9 +484*x^8 -679*x^7 -484*x^6 -195*x^5 -94*x^4 -7*x^3 -3*x^2 -x -1) / ((x^2 -4*x +1)*(x^2 +4*x +1)*(x^4 +14*x^2 +1)*(x^8 +194*x^4 +1)). - _Colin Barker_, Dec 15 2013

%t Denominator[Convergents[Sqrt[768], 30]] (* _Vincenzo Librandi_, Jan 23 2014 *)

%Y Cf. A042480, A040740.

%K nonn,frac,easy

%O 0,3

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 15 2013