login
A042469
Denominators of continued fraction convergents to sqrt(762).
2
1, 1, 2, 3, 5, 43, 48, 91, 139, 230, 12559, 12789, 25348, 38137, 63485, 546017, 609502, 1155519, 1765021, 2920540, 159474181, 162394721, 321868902, 484263623, 806132525, 6933323823, 7739456348, 14672780171, 22412236519, 37085016690, 2025003137779
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 12698, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: -(x^4 - 3*x^3 + 4*x^2 - 2*x + 1)*(x^4 + 2*x^3 + 4*x^2 + 3*x + 1)*(x^10 - 46*x^5 - 1) / (x^20 - 12698*x^10 + 1). - Colin Barker, Dec 15 2013
a(n) = 12698*a(n-10) - a(n-20) for n > 19. - Vincenzo Librandi, Jan 23 2014
MATHEMATICA
Denominator[Convergents[Sqrt[762], 30]] (* Harvey P. Dale, Feb 20 2013 *)
PROG
(Magma) I:=[1, 1, 2, 3, 5, 43, 48, 91, 139, 230, 12559, 12789, 25348, 38137, 63485, 546017, 609502, 1155519, 1765021, 2920540]; [n le 20 select I[n] else 12698*Self(n-10)-Self(n-20): n in [1..40]]; // Vincenzo Librandi, Jan 23 2014
CROSSREFS
Sequence in context: A106820 A362957 A379768 * A107990 A117460 A281252
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Dec 15 2013
STATUS
approved