login
Numerators of continued fraction convergents to sqrt(757).
2

%I #15 Mar 18 2017 16:39:33

%S 27,28,55,963,1018,6053,31283,37336,665995,703331,1369326,74646935,

%T 76016261,150663196,2637290593,2787953789,16577059538,85673251479,

%U 102250311017,1823928538768,1926178849785,3750107388553,204431977831647,208182085220200,412614063051847

%N Numerators of continued fraction convergents to sqrt(757).

%H Vincenzo Librandi, <a href="/A042458/b042458.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2738652, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%F G.f.: -(x^21 -27*x^20 +28*x^19 -55*x^18 +963*x^17 -1018*x^16 +6053*x^15 -31283*x^14 +37336*x^13 -665995*x^12 +703331*x^11 +1369326*x^10 +703331*x^9 +665995*x^8 +37336*x^7 +31283*x^6 +6053*x^5 +1018*x^4 +963*x^3 +55*x^2 +28*x +27) / (x^22 +2738652*x^11 -1). - _Colin Barker_, Dec 14 2013

%t Numerator[Convergents[Sqrt[757], 30]] (* _Vincenzo Librandi_, Nov 25 2013 *)

%Y Cf. A042459, A040729.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 14 2013