login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042403
Denominators of continued fraction convergents to sqrt(728).
2
1, 1, 53, 54, 2861, 2915, 154441, 157356, 8336953, 8494309, 450041021, 458535330, 24293878181, 24752413511, 1311419380753, 1336171794264, 70792352682481, 72128524476745, 3821475625473221, 3893604149949966, 206288891422871453, 210182495572821419
OFFSET
0,3
COMMENTS
The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 52 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 27 2014
FORMULA
G.f.: -(x^2-x-1) / (x^4-54*x^2+1). - Colin Barker, Dec 10 2013
a(n) = 54*a(n-2) - a(n-4) for n>3. - Vincenzo Librandi, Jan 21 2014
From Peter Bala, May 27 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = sqrt(13) + sqrt(14) and beta = sqrt(13) - sqrt(14) be the roots of the equation x^2 - sqrt(52)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even.
a(n) = Product_{k = 1..floor((n-1)/2)} ( 52 + 4*cos^2(k*Pi/n) ).
Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 52*a(2*n) + a(2*n - 1). (End)
MATHEMATICA
Denominator/@Convergents[Sqrt[728], 40] (* Harvey P. Dale, May 08 2011 *)
CoefficientList[Series[(1 + x - x^2)/(x^4 - 54 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 21 2014 *)
PROG
(Magma) I:=[1, 1, 53, 54]; [n le 4 select I[n] else 54*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jan 21 2014
CROSSREFS
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Dec 10 2013
STATUS
approved