login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of continued fraction convergents to sqrt(665).
2

%I #19 Jul 04 2021 14:51:51

%S 25,26,103,129,361,851,2063,2914,10805,13719,696755,710474,2828177,

%T 3538651,9905479,23349609,56604697,79954306,296467615,376421921,

%U 19117563665,19493985586,77599520423,97093506009,271786532441,640666570891,1553119674223,2193786245114

%N Numerators of continued fraction convergents to sqrt(665).

%H Vincenzo Librandi, <a href="/A042278/b042278.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 27438, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^19 -25*x^18 +26*x^17 -103*x^16 +129*x^15 -361*x^14 +851*x^13 -2063*x^12 +2914*x^11 -10805*x^10 -13719*x^9 -10805*x^8 -2914*x^7 -2063*x^6 -851*x^5 -361*x^4 -129*x^3 -103*x^2 -26*x -25) / (x^20 -27438*x^10 +1). - _Colin Barker_, Dec 06 2013

%p convert(sqrt(665),confrac,30,cvgts): numer(cvgts); # _Wesley Ivan Hurt_, Dec 07 2013

%t Numerator[Convergents[Sqrt[665], 30]] (* _Vincenzo Librandi_, Nov 20 2013 *)

%t LinearRecurrence[{0,0,0,0,0,0,0,0,0,27438,0,0,0,0,0,0,0,0,0,-1},{25,26,103,129,361,851,2063,2914,10805,13719,696755,710474,2828177,3538651,9905479,23349609,56604697,79954306,296467615,376421921},30] (* _Harvey P. Dale_, Jul 04 2021 *)

%Y Cf. A042279, A040639.

%K nonn,cofr,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 06 2013