login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042266
Numerators of continued fraction convergents to sqrt(659).
2
25, 26, 77, 1951, 3979, 5930, 300479, 306409, 913297, 23138834, 47190965, 70329799, 3563680915, 3634010714, 10831702343, 274426569289, 559684840921, 834111410210, 42265255351421, 43099366761631
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 11860, 0, 0, 0, 0, 0, -1).
FORMULA
G.f.: (25 + 26*x + 77*x^2 + 1951*x^3 + 3979*x^4 + 5930*x^5 + 3979*x^6 - 1951*x^7 + 77*x^8 - 26*x^9 + 25*x^10 - x^11)/(1 - 11860*x^6 + x^12). - Vincenzo Librandi, Nov 20 2013
a(n) = 11860*a(n-6) - a(n-12). - Vincenzo Librandi, Nov 18 2013
MATHEMATICA
Numerator[Convergents[Sqrt[659], 30]] (* or *) CoefficientList[Series[(25 + 26 x + 77 x^2 + 1951 x^3 + 3979 x^4 + 5930 x^5 + 3979 x^6 - 1951 x^7 + 77 x^8 - 26 x^9 + 25 x^10 - x^11)/(1 - 11860 x^6 + x^12), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 20 2013 *)
LinearRecurrence[{0, 0, 0, 0, 0, 11860, 0, 0, 0, 0, 0, -1}, {25, 26, 77, 1951, 3979, 5930, 300479, 306409, 913297, 23138834, 47190965, 70329799}, 30] (* Harvey P. Dale, Jan 04 2023 *)
PROG
(Magma) I:=[25, 26, 77, 1951, 3979, 5930, 300479, 306409, 913297, 23138834, 47190965, 70329799]; [n le 12 select I[n] else 11860*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, Nov 18 2013
CROSSREFS
Cf. A042267.
Sequence in context: A042274 A042270 A042268 * A042278 A042276 A042282
KEYWORD
nonn,cofr,frac,easy
AUTHOR
STATUS
approved