login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numerators of continued fraction convergents to sqrt(601).
2

%I #13 Jul 17 2023 23:45:05

%S 24,25,49,760,809,4805,24834,79307,104141,183448,471037,654485,

%T 1780007,4214499,5994506,58165053,529479983,587645036,1704770055,

%U 3997185146,5701955201,15401095548,21103050749

%N Numerators of continued fraction convergents to sqrt(601).

%H Vincenzo Librandi, <a href="/A042152/b042152.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_62">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 278936607359064, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%t Most[Convergents[Sqrt[601]]//Numerator] (* _Harvey P. Dale_, Mar 29 2021 *)

%Y Cf. A042153.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.