login
Numerators of continued fraction convergents to sqrt(551).
2

%I #20 Sep 05 2022 21:37:16

%S 23,47,399,446,3967,8380,389447,787274,6687639,7474913,66486943,

%T 140448799,6527131697,13194712193,112084829241,125279541434,

%U 1114321160713,2353921862860,109394726852273,221143375567406,1878541731391521,2099685106958927,18676022587062937

%N Numerators of continued fraction convergents to sqrt(551).

%H Vincenzo Librandi, <a href="/A042054/b042054.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 16760, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^11 -23*x^10 +47*x^9 -399*x^8 +446*x^7 -3967*x^6 -8380*x^5 -3967*x^4 -446*x^3 -399*x^2 -47*x -23) / (x^12 -16760*x^6 +1). - _Colin Barker_, Nov 30 2013

%F a(n) = 16760*a(n-6) - a(n-12). - _Wesley Ivan Hurt_, Sep 05 2022

%t Numerator[Convergents[Sqrt[551], 30]] (* _Vincenzo Librandi_, Nov 14 2013 *)

%t LinearRecurrence[{0,0,0,0,0,16760,0,0,0,0,0,-1},{23,47,399,446,3967,8380,389447,787274,6687639,7474913,66486943,140448799},30] (* _Harvey P. Dale_, Feb 11 2022 *)

%Y Cf. A042055, A040527.

%K nonn,cofr,frac,easy,less

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 30 2013